

Towards Acquiring Case Indexing Taxonomies From Text

Kalyan Moy Gupta1, 2 and David W. Aha2

1ITT Industries; AES Division; Alexandria, VA 22303
2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5515); Washington, DC 20375
surname@aic.nrl.navy.mil

Abstract

Taxonomic case-based reasoning is a conversational case-
based reasoning methodology that employs feature
subsumption taxonomies for incremental case retrieval.
Although this approach has several benefits over standard
retrieval approaches, methods for automatically acquiring
these taxonomies from text documents do not exist, which
limits its widespread implementation. To accelerate and
simplify feature acquisition and case indexing, we introduce
FACIT, a domain independent framework that combines
deep natural language processing techniques and generative
lexicons to semi-automatically acquire case indexing
taxonomies from text documents. FACIT employs a novel
method to generate a logical form representation of text, and
uses it to automatically extract and organize features. In
contrast to standard information extraction approaches,
FACIT’s knowledge extraction approach should be more
accurate and robust to syntactic variations in text sources
due to its use of logical forms. We detail FACIT and its
implementation status.

1. Introduction
Case-based reasoning (CBR) is a general methodology for
retrieving and reusing past experience to solve similar new
decision problems (Aamodt and Plaza 1994).
Conversational CBR (CCBR) is a CBR methodology that
engages a user in a question answer dialog to retrieve cases
(Aha et al. 2001). It has been successfully deployed in
many help-desk and troubleshooting applications.
Taxonomic CBR enhances CCBR by exploiting features
organized into taxonomies to shorten user adaptive
conversations and improve case retrieval performance
(Gupta 2001; Gupta et al. 2002).

A key challenge for applying CBR is acquiring cases
from text documents (e.g., manuals, reports, logs), which is
a focus of Textual CBR (Ashley and Lenz 1998). For each
case, these systems must determine, or be told, which of the
predefined features to use as indices. When the mapping of
indexing features to text cases is simple, a bag-of-words
approach can be used to automate feature extraction (e.g.,
Burke et al. 1997). However, when this mapping is
complex, these features must be manually identified (e.g.,
Weber et al. 1998; Brüninghaus and Ashley 2001).
Unfortunately, this approach fails when the features are not
known a priori, as is true for complex troubleshooting
applications and many other domains. To our knowledge,

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

this feature acquisition problem has not been addressed
previously. The problem is further compounded by
Taxonomic CBR's need to organize features into
subsumption taxonomies (Gupta 2001). Fortunately, this
feature acquisition and organization problem can be
addressed by knowledge extraction techniques (Cowie and
Lehnert 1996), which aim to deduce knowledge artifacts
such as rules, cases, and domain models from text.
However, knowledge extraction involves significantly more
complex natural language processing (NLP) methods than
do traditional information extraction (IE) approaches.

In this paper, we introduce knowledge extraction
methodologies in the form of a domain independent
framework for feature acquisition and case indexing from
text (FACIT). FACIT uses deep NLP techniques with a
generative lexicon for semantic interpretation to enable
robust interpretation of previously unseen text documents
(Gupta and Aha 2003). In a forthcoming paper, we present
evidence that standard IE techniques perform poorly in
comparison to FACIT's knowledge extraction techniques
on this feature organization task (Gupta et al. 2004).
 We next describe related work on acquiring case indices
from text. We then introduce FACIT, illustrating its
processes with an example. Finally, we report on FACIT’s
implementation status and discuss future research ideas.

2. Methods for Indexing Text Cases
Several engineering processes for acquiring high quality
cases exist (e.g., Gupta 1997). Developers typically
consult documented knowledge and subject matter experts
(e.g., for an equipment diagnosis application, they may rely
on troubleshooting manuals, maintenance logs, and failure
modes analysis). Developers select the case material,
translate it into language for end user consumption, and
encode it into a representation for use by the CBR system.

Unfortunately, these processes are mostly manual, are
minimally supported by editors, and require a significant
amount of skill, effort, and time. This complicates the wide
spread application of CBR, and is exacerbated by the use
of increasingly sophisticated CBR methodological variants
such as Taxonomic CBR. Thus, case index acquisition
can be significantly accelerated by using software tools that
assist with identifying, extracting, and transforming content
from text sources to identify their indices.

 Several researchers have developed methods for
assigning indices to text documents, as summarized in
Table 1, but none appear to have developed index
extraction methods for domain-independent, unstructured

Gupta, K.M., & Aha, D.W. (2004). Towards acquiring case indexing taxonomies from text. Proceedings of the
Seventeenth International FLAIRS Conference. Miami Beach, FL: AAAI Press.

 text documents. Source refers to the source documents.
While most methods use lexicons that are sense
enumerative, FACIT’s lexicon is generative (see Section
3). Several methods use patterns/templates to assign
indexing features, while more sophisticated methods (e.g.,
SMILE) automatically construct these patterns. In contrast,
FACIT does not use patterns to extract features. Most
methods use a bag-of-words approach to represent concepts
in the text. An exception is propositional patterns
(Brüninghaus and Ashley 2001), which provide an
abstraction mechanism. In contrast, FACIT uses canonical
logical forms to represent text that may contain features;
this enables reasoning on the information content of the
source documents. Most methods use an attribute-value
(feature) index representation, such as a set of fields in a
template, although case retrieval networks (Lenz et al.
1998) have also been used. In contrast, FACIT derives
feature subsumption taxonomies in addition to features.
Invariably, developers and/or experts serve multiple roles
during the feature assignment process. This is also true for
FACIT, but to a much lesser degree; we assume a domain
expert will provide feedback only on whether sampled
sentences contain features of interest. In summary, FACIT
is the first index acquisition methodology to use a
generative semantic lexicon and a logical form
representation for extracted features. This permits it to
identify feature relations, and thus generate feature
subsumption taxonomies.

3. Acquisition and Indexing Framework
FACIT updates a semantic lexicon and uses it for syntactic
and deep semantic interpretation to create a complete and
valid logical form representation, which is a set of

sentences represented in a predicate argument structure.
FACIT extracts features from the logical form to index
cases. We next describe and illustrate FACIT’s six steps
(see Figure 1) by processing example sentences from the
troubleshooting chapter of Canon’s Multipass C-5500
printer user manual (CSSI 1998). Steps 2-4 implement a
knowledge extraction process.
1. Update the semantic lexicon: NLP systems employ
lexical knowledge bases (LKBs) to look up potential senses
(concepts) associated with a term and use a disambiguation
technique to select the most applicable sense among them.
Domain independent LKBs (e.g., WordNet (Felbaum
1998), Sensus (Knight and Luk 1994)) have poor coverage
for domain specific text applications. For example,
WordNet covers only 25.6% of the terms from our naval
training exercises domain (Gupta et al. 2002). Its coverage
of senses is likely to be even lower because it lacks domain
specific senses for known terms. Consequently, selected
lexical resources must include domain specific terms and
senses. Thus, issues of concern include the lexicon choice
and the effort required to update it.

Semantic lexicons can be categorized as either sense
enumerative (e.g., WordNet, Sensus) or generative
(Pustejovsky 1995). Enumerative lexicons, which require
listing every sense of a term or phrase in the lexicon, have
weak lexical semantics (few impoverished relation types
between concepts), weak compositionality (cannot derive
the meaning of an unlisted phrase from its constituent
terms), and large sense ambiguities. Thus, the effort to
update such lexicons increases linearly with the number of
unknown terms and phrases. In contrast, generative
lexicons (GLs) include rich, well-principled semantics (can
express an unlimited set of relations) and do not require

Table 1: Characterizing approaches for assigning indices to text documents. Legend: AV=Attribute-value; CRN=Case retrieval
network; DSF=Developer supplies features; DSL=Developer supplies lexicon; DSS=Developer supplies similarity information;
ESV=Expert supplies values (for attributes); EV=Expert validation); FT=Free text; IEs=Information-entity pairs;
ProPs=Propositional patterns; SE=Sense enumerative; SST=Semi-structured text

Logical Form

None

ProPs

Bag of Words

Dictionary Terms

None

WordNet Synset #

None

WordNet Synset #

Concept
Representation

None

Templates

Induced Rules
and ProPs

Induced
classifier

IEs

None

IEs

Templates

None

Patterns

Generative

None

SE

SE

SE

Concept Taxonomy

SE

None

SE

Lexicon &
Representation

FT

SST

FT

FT

SST

FT

SST

SST

SST

Source

DSL, EVTaxonomicFACIT
(Gupta & Aha, this paper)

DSL, DSF, EVAVIDS+ (Yang et al., 2003)

DSL, DSF, ESVAV (Factors)SMILE+AutoSlog
(Brüninghaus & Ashley, 200l)

DSL, DSF, ESVAV (Factors)SMILE
(Brüninghaus & Ashley, 1999)

DSL, DSFCRN(Minor & Hübner, 1999)

DSL, DSF, ESVAVIndexing Assistant
(Baudin & Waterman, 1998)

DSL, DSF, DSSCRNFAllQ (Lenz et al., 1998)

DSFAVPrudentia
(Weber et al., 1998)

DSLSense-Tagged
Bag of Words

FAQ Finder
(Burke et al., 1997)

Human Roles
Case

RepresentationName + Reference

Logical Form

None

ProPs

Bag of Words

Dictionary Terms

None

WordNet Synset #

None

WordNet Synset #

Concept
Representation

None

Templates

Induced Rules
and ProPs

Induced
classifier

IEs

None

IEs

Templates

None

Patterns

Generative

None

SE

SE

SE

Concept Taxonomy

SE

None

SE

Lexicon &
Representation

FT

SST

FT

FT

SST

FT

SST

SST

SST

Source

DSL, EVTaxonomicFACIT
(Gupta & Aha, this paper)

DSL, DSF, EVAVIDS+ (Yang et al., 2003)

DSL, DSF, ESVAV (Factors)SMILE+AutoSlog
(Brüninghaus & Ashley, 200l)

DSL, DSF, ESVAV (Factors)SMILE
(Brüninghaus & Ashley, 1999)

DSL, DSFCRN(Minor & Hübner, 1999)

DSL, DSF, ESVAVIndexing Assistant
(Baudin & Waterman, 1998)

DSL, DSF, DSSCRNFAllQ (Lenz et al., 1998)

DSFAVPrudentia
(Weber et al., 1998)

DSLSense-Tagged
Bag of Words

FAQ Finder
(Burke et al., 1997)

Human Roles
Case

RepresentationName + Reference

explicitly listing all potential senses of a term. Instead, a
small set of powerful operators generates them on demand
from their context of use. GL supports strong
compositionality and can derive senses of previously
unseen term combinations. The effort required to update
GLs is sublinear and comparatively marginal.

We developed several extensions to GL theory and
implemented these in a representation called Sublanguage
Ontology (SO) (Gupta and Aha 2003). We also developed
software tools that support the development and
maintenance of SOs, including the Sublanguage Ontology
Editor, which allows users to edit new and existing
concepts, and the Concept Discovery Workbench (CDW),
which supports the semi-automatic acquisition of concepts
from text documents. This greatly simplifies and
accelerates ontology updating.

Using the CDW to discover terms from the Multipass C-
5500 manual reveals new terms and concepts for updating
the lexicon. For example, these include noun terms and
phrases such as Multipass C-5000, sheet feeder or
automatic document feeder, power cord, and interface
cable. Also, compound terms like sheet feeder can be
compositionally interpreted as an INSTRUMENT/PART
for feeding sheets. CDW’s output is used to (manually)
create new concepts, as exemplified in Figure 2, which can
be related to existing concepts within the SO.

SOs can represent considerable lexical and domain
knowledge using inheritable objects and relations. For
example, Figure 2 shows that MULTIPASS-C-5500 is a
type of PRINTING_INSTRUMENT that human agents use
to print INFORMATION and is an artifact made by the
organization CANON INC. It includes PARTs such as

SHEETFEEDER, which in turn includes a part
PAPER_GUIDE. The domain knowledge acquired during
this phase will be the basis for feature organization (step 5).
In addition, the noun term unit was added as a synonym for
MULTIPASS. Other senses of unit that are irrelevant to the
selected application can be suppressed to prevent
unnecessary ambiguity resolution overhead in step 3. In
technical domains, nouns representing components, parts,
and names account for the majority of lexicon updates.
2. Syntactically parse the source text: Although case
extraction methods often assume each document contains a
case, this depends on the document type. For example,
troubleshooting manuals often contain information in a
tabular format1 from which cases must be constructed prior
to encoding. This preprocessing step, not shown in Figure
1, must be performed prior to syntactic parsing. Thus, we
developed the Document Extraction Workbench to help
manually extract cases into arbitrarily complex structures.
For example, it can be used to create a case with fields
corresponding to a source document’s column headings.
Figure 3 displays a preprocessed input for FACIT.

Figure 3: Example semi-structured case text from the Multipass
domain document (CSSI 1998).
Transforming text into its logical form involves a two-step
process that includes syntactic parsing and semantic
interpretation. Syntactic parsing assigns part-of-speech and
sentence structure using a grammar and a lexicon. The
sentence structure represents the grammatical structure
comprising a hierarchical relationship between the terms
and phrases of a sentence. For example, Figure 4 shows the
parse of the sentence “Data from computer is not printed”.

1Although this example has implicit (tabular) structure, FACIT does not
require any implicit structure to extract case indices.

Problem: Data from the computer is not printed
Cause: The print head unit may need cleaning.

Solution: Clean the print head. See page 9-8.

Figure 1: The FACIT framework processes and steps

Lexical Resource
Development

Taxonomic Case Acquisition from Text

2. Syntactically Parse the Source Text
• Tag text with part-of-speech
• Analyze sentence structure

4. Extract features

3. Semantically Interpret the Parsed Text
• Morphologically analyze tagged text
• Identify senses
• Disambiguate senses

6. Assign case indices

5. Organize (generalize) features

Source Text
(e.g. Troubleshooting Manual,

Fault Reports)

Source Logical Form

Feature Taxonomies

Taxonomic Cases

Semantic
Lexicon

1. Update the
Semantic Lexicon

Domain specific
concepts

Lexical Resource
Development

Taxonomic Case Acquisition from Text

2. Syntactically Parse the Source Text
• Tag text with part-of-speech
• Analyze sentence structure

4. Extract features

3. Semantically Interpret the Parsed Text
• Morphologically analyze tagged text
• Identify senses
• Disambiguate senses

6. Assign case indices

5. Organize (generalize) features

Source Text
(e.g. Troubleshooting Manual,

Fault Reports)

Source Logical Form

Feature Taxonomies

Taxonomic Cases

Semantic
Lexicon

1. Update the
Semantic Lexicon

Domain specific
concepts

Figure 2: Two MULTIPASS sublanguage ontology concepts

SHEETFEEDER <
terms <sheet feeder/n, ADF/n>
type_of: <FEEDING_INSTR>
attributes: <
!SIZE(this, unspecified)
!COLOR(this, unspecified),… >

constituents: <
PART(this, PAPER_GUIDE),…>

behaviors <
FEED_ACT (HUMAN,PAPER, this,

MULTIPASS-C-5500)>
creative events <
MAKE_ACT(CANON_INC,this)>>

MULTIPASS-C-5500 <
terms: <Multipass-C-5500/n,

unit/n>
type_of: <PRINTING_INSTR>
attributes: <
!SIZE(this,unspecified)
!COLOR(this, unspecified)…>

constituents: <
PART(this, SHEETFEEDER),
PART(this, OP_PANEL),
PART(this, POWER_CORD),…>

behaviors <
!PRINT_ACT(HUMAN,INFO,

this)>
MOVE_ACT(HUMAN,INFO,…)>

creative events <
MAKE_ACT(CANON_INC, this)>>
Legend: CONCEPTS; Slotnames; <values>; !inherited slot; /part of
speech (e.g.,n=Noun)

SHEETFEEDER <
terms <sheet feeder/n, ADF/n>
type_of: <FEEDING_INSTR>
attributes: <
!SIZE(this, unspecified)
!COLOR(this, unspecified),… >

constituents: <
PART(this, PAPER_GUIDE),…>

behaviors <
FEED_ACT (HUMAN,PAPER, this,

MULTIPASS-C-5500)>
creative events <
MAKE_ACT(CANON_INC,this)>>

MULTIPASS-C-5500 <
terms: <Multipass-C-5500/n,

unit/n>
type_of: <PRINTING_INSTR>
attributes: <
!SIZE(this,unspecified)
!COLOR(this, unspecified)…>

constituents: <
PART(this, SHEETFEEDER),
PART(this, OP_PANEL),
PART(this, POWER_CORD),…>

behaviors <
!PRINT_ACT(HUMAN,INFO,

this)>
MOVE_ACT(HUMAN,INFO,…)>

creative events <
MAKE_ACT(CANON_INC, this)>>

SHEETFEEDER <
terms <sheet feeder/n, ADF/n>
type_of: <FEEDING_INSTR>
attributes: <
!SIZE(this, unspecified)
!COLOR(this, unspecified),… >

constituents: <
PART(this, PAPER_GUIDE),…>

behaviors <
FEED_ACT (HUMAN,PAPER, this,

MULTIPASS-C-5500)>
creative events <
MAKE_ACT(CANON_INC,this)>>

MULTIPASS-C-5500 <
terms: <Multipass-C-5500/n,

unit/n>
type_of: <PRINTING_INSTR>
attributes: <
!SIZE(this,unspecified)
!COLOR(this, unspecified)…>

constituents: <
PART(this, SHEETFEEDER),
PART(this, OP_PANEL),
PART(this, POWER_CORD),…>

behaviors <
!PRINT_ACT(HUMAN,INFO,

this)>
MOVE_ACT(HUMAN,INFO,…)>

creative events <
MAKE_ACT(CANON_INC, this)>>
Legend: CONCEPTS; Slotnames; <values>; !inherited slot; /part of
speech (e.g.,n=Noun)

Syntactic parsers are categorized as either shallow or
deep. Deep parsers search for and enumerate all potential
parses based on the grammar and lexicon (e.g., CMU’s
Link Parser (Link 2003)). Depending on a sentence’s
length and complexity, it may have thousands of parses,
which can yield considerable sentence structure ambiguity
that must be resolved by semantic interpretation.
Generating all parses and selecting a valid parse among
them can be computationally expensive. However, all
potential parses must be considered to ensure that the valid
parse will be found.

Shallow parsers use statistical, memory-based (e.g.
Zavrel and Daelemans 1999), and/or data-based techniques
to efficiently return one or a few top ranked parses, but
they return only constituent phrases and a partial syntactic
structure. This fast technique has been used in information
retrieval and IE applications, whose needs can be met by a
shallow parse output. However, using shallow parsing for
feature extraction and assignment is problematic because:
 The likelihood of finding a valid parse can be

unacceptably low.
 It shifts and increases the burden of knowledge

engineering to the development of IE patterns, which
provide limited domain knowledge and cannot be
effectively reused to aid similarity assessment.

Because case index acquisition can be an off-line process
in our domains, we use deep parsing. Furthermore, FACIT
eliminates the use of domain specific IE patterns. As shown
later, the domain knowledge acquired and stored in LKBs
such as an SO can be effectively reused for similarity
assessment. To this end, we have adapted the Link Parser
(Link 2003) to perform deep parsing. It degrades
gracefully when presented with ill-formed text by allowing
broken links or structures.
3. Semantically interpret the text: Semantic
interpretation transforms the grammatical form (or the
syntactic parse) into a logical form, which uses predicate
argument structures to represent the meaning of sentences
contained in the text as propositions (see Figure 5).

INSTANCE_OF(DATA, data_1) AND
INSTANCE_OF(COMP_INSTR, computer_1) AND
NOT(PRINTED(HUMAN, data_1, PRINTING_INST)) AND
NATIVE_OF(computer_1, data_1)

Figure 5: Logical form derived from the parse in Figure 4
Sentences with different grammatical structure but the same
meaning must have, or must be reducible to, the same
logical form. For example, the following sentences would

yield the same logical form, or meaning, as the sentence in
Figure 4 except for new variable instantiations.
 Data sent from the printer to the computer is not printed
 Data is not printed by the printer
 Multipass is not printing data from the computer

A large amount of surface syntactical variation of NL text
is eliminated by transforming it into its logical form.
Furthermore, predicate calculus operations are applicable
to logical forms, thereby enabling symbolic reasoning. We
propose to use these operators for generalizing and
selecting features in step 5 of FACIT.
 FACIT creates the logical form from the syntactic parse
as follows:

1. Look up senses in the lexicon: All concepts indexed by
the terms in the sentence are retrieved from the LKB.
For the sentence in Figure 4, our approach retrieves
the concepts DATA, COMP INSTR, and NOT for the
terms data(n), computer(n), and not(d). Also retrieved
are OCCUR LOCATED and NATIVE OF for the term
from(p), and PRINT EVENT for the term print(v),
which was obtained by morphologically parsing the
term printed(v). Clearly, concepts represented using
predicate argument relations are necessary for deriving
logical forms. Therefore, LKBs that do not support
such representations cannot be directly used.

2. Resolve semantic ambiguity: Semantic ambiguity
results when multiple concepts are retrieved for a term.
Heuristics can be used to resolve these ambiguities.
For example, OCCUR LOCATED and NATIVE OF
are both retrieved for the term from(p). In this case,
heuristics select the concept NATIVE OF because a
larger proportion of its arguments are instantiated.

3. Resolve syntactic ambiguity: When multiple parses are
semantically interpreted, the instantiation and
predicate argument binding differ among them. FACIT
selects the parse(s) that has the most predicate
argument bindings as the valid one. Therefore,
syntactic ambiguity resolution takes place during the
semantic interpretation step.

We implemented a preliminary version of a semantic
interpreter that operates with our SO and the output of the
Link Parser.
4. Extract features from the logical form: Case features
in a troubleshooting application are abnormal states and/or
observations pertaining to a piece of equipment. For
example, statements such as “Data from the computer is not
printed”, “Printout curls”, and “Printout does not match the
paper size” are abnormal conditions in a printer
troubleshooting domain, whereas the statement “Make sure
the computer and the application are configured correctly”
is a repair instruction.
 After step 3, all statements from the text are available in
logical form. We propose to induce a classifier to extract
features represented in logical form. To do this, we will
obtain training data by asking a user to classify sampled
sentences as features or non-features from a given text
document. The predicates and arguments in the

Figure 4: A syntactic parse for a printing domain sentence

Data from computer is not printed
N P N V V

NP
PP

VP

VP

S

OBJ

Data from computer is not printed
N P N V V

NP
PP

VP

VP

S

OBJ

corresponding logical forms will serve as the features, and
we will select an appropriate learning algorithm through an
analysis of the learning task. We will then use the trained
classifier to extract features from all the text. Our proposed
approach differs from SMILE (Brüninghaus and Ashley
1999) in that FACIT performs feature extraction and case
indexing while SMILE performs only the latter. Also,
FACIT’s indexing strategy differs greatly (see step 6).

FACIT’s feature extraction method differs from IE
approaches that use patterns/templates (e.g., Weber et al.
1998) or induction to extract cases from text. Rather than
using a large library of domain specific IE patterns, FACIT
uses one or more classifiers to extract features.
Furthermore, as we illustrate in step 5, features extracted by
IE techniques do not lend themselves to generalization.
Thus, FACIT requires less feature engineering, and will
likely yield systems that have higher recall and precision
performance than shallow NLP approaches in situations
where the characterizing features are not known a priori.
5. Feature organization/generalization: To organize
features into subsumption taxonomies, we propose the
following procedure. First, it will perform a pair-wise
comparison of each feature to examine a potential
subsumption relation (i.e., a member or subset relation
between two logical sentences (Russell and Norvig 1995)).
These features are expressed in logical forms that include
concepts and relations from the SO. We assume that each
feature is a complex sentence of literals connected by
connectives, as shown in Figure 5. Initially, we will
consider only conjunctive expressions. The background
knowledge to induce taxonomies is in the SO, which uses
three types of lexical relations to assess subsumption:

1. Is_a_type_of: This standard relation is the basis for
multiple-inheritance in a SO and applies to both
entities and events. For example, the entity
PRINTING_INSTR is_a_type_of INSTRUMENT and
the event TURN is_a_type_of MOVE.

2. Constituent: This includes a family of is_a_part_of
relations that applies to entities such as INCLUDE,
WHOLE_PART, and SET_MEMBER.

3. Is_a_subevent: This includes hierarchical and temporal
relationships between events. For example, two
subevents of PRINT_ACT are FEED_PAPER_ACT,
and MOVE_PRINTHEAD_ACT.

We will use additional background knowledge as needed to
assess subsumption relations. For example, domain specific
implication rules such as

 NOT(EVENT) ⇒ PROBLEM(EVENT)
implies that, if an event does not occur, then there is a
problem with the event. This permits the conclusion that,
for example, the statement “printing Problem” subsumes
the statement “Data from computer is not printed”. To
assess this subsumption relation, our procedure will
generalize the logical form of the statement “Data from
computer is not printed” by reducing the conjuncts to
NOT(PRINTED(HUMAN,DATA,PRINTING_INST))
and then applying the rule to obtain the further

generalization PROBLEM(PRINT_EVENT), which is a
logical form for the statement “Printing problem”. We will
address where and how such background knowledge will
be acquired and stored in our future research efforts.

After all potential subsumption relations are identified in
a matrix, directed graphs, each representing a taxonomy,
shall be automatically constructed and presented to the
domain expert for verification.
6. Assigning indices to cases: Indexing a taxonomic case
involves assigning one or more leaves from distinct feature
taxonomies. Step 4 provides the logical form of features
applicable to the cases. Using the feature taxonomies as a
reference, FACIT will select only the most specific distinct
features applicable to a case to encode it. If a most specific
feature in the case is not a leaf from one of the taxonomies,
then the case shall be brought to a domain expert’s
attention for review and correction. This process of case
indexing significantly differs from those that assign
predefined features (e.g., Weber et al. 1998; Brüninghaus
and Ashley 1999; 2001).

4. Implementation Status
In this section, we summarize the status of the Java tools
we have implemented for each of FACIT’s steps.
1. Updating a semantic lexicon: We implemented the SO
representation, the Sublanguage Ontology Editor, and the
CDW to populate and update sublanguage ontologies. An
SO implements a lexical representation in an XML
structured repository that includes our extensions to GL
theory (Gupta and Aha 2003). We are currently extending
SOs to support both syntactic and semantic morphological
processing that will increase the robustness of semantic
interpretation.

CDW processes English text to help a knowledge
engineer update SOs with domain specific terms and their
related concepts. CDW discovers concept elements such as
the terms, phrases, acronyms, and abbreviations for
indexing SO concepts. CDW currently operates in a
standalone mode. We will integrate these tools to increase
the efficiency of SO updating tasks.
2. Syntactic parser. We implemented JLink, an interface
to CMU’s easily available Link Parser (Link 2003), which
supports syntactic parsing. We integrated this with our Java
implementation of Brill’s (1995) part-of-speech tagger to
help efficiently select better parses. We may later replace
this with a suitable probabilistic parser.
3. Semantic Interpreter: Our SO driven semantic
interpreter is a preliminary implementation that operates on
JLink output. Informal tests show its interpretation to be
accurate and its speed to be fast for text of reasonable
complexity, such as for Navy Lessons Learned System
documents.
4. Feature extractor: Not yet implemented
5. Feature organizer: Not yet implemented
6. Case creation and indexing: Our Document Extraction
Workbench tool is useful for manually annotating the

primary components of a case from documents. It uses a
handy drag and drop interface to provide XML markup of
arbitrary complexity. However, we have not yet automated
this process, or implemented case indexing tools.

5. Conclusion and Future Work
Documents such as manuals, logs, and reports are a
primary source of cases for CBR applications. Case
acquisition systems have predominantly focused on case
indexing, but have ignored the important task of feature
acquisition. In this paper, we introduced FACIT, a semi-
automated knowledge extraction framework that uses deep
NLP techniques to perform feature acquisition and
relational feature organization when the source documents
are relatively unstructured and the ability to detect subtle
nuances in language is crucial to extraction performance.
FACIT uses domain specific generative ontologies to
create logical form representations for text documents of
arbitrary complexity. We showed how these could be used
to semi-automatically extract features and their relations
without using a priori patterns.
 In the future, we will develop, implement, and evaluate
components for each of FACIT’s steps, and complete our
existing components. We will evaluate the accuracy of
generating logical forms by processing a variety of source
text, and investigate various machine learning techniques
for extracting features from logical forms. Finally, we will
formalize the algorithm for subsumption detection and
assess the impact of implication rules for this task.

As FACIT is not yet fully implemented, we cannot
present evidence for our claims. When completed, it could
best be compared with other domain independent
approaches that semi-automatically perform feature
extraction, organization, and assignment from text
documents. However, we are not aware of any other
approach that addresses this complete set of problems.

Acknowledgements
Thanks to Rosina Weber, Karl Branting and our reviewers
for excellent suggestions on an earlier version of this paper.

References
Aamodt, A., & Plaza, E. (1994). Case-based reasoning:
Foundational issues, methodological variations, and system
approaches. AI Communications, 7, 39-59.
Aha, D.W., Breslow, L.A., & Munoz-Avila, H. (2001).
Conversational CBR. Applied Intelligence, 14(1), 9-32.
Ashley, K., & Lenz, M. (Eds.) (1998). Textual case-based
reasoning: Papers from the AAAI workshop (Technical Report
WS-98-12). Madison, WI: AAAI Press.
Baudin, C., & Waterman, S. (1998). From text to cases: Machine
aided text categorization for capturing business reengineering
cases. In (Ashley & Lenz, 1998).
Brill, E. (1995). Transformation-based tagger, V1.14.
[http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z]
Brüninghaus, S., & Ashley, K.D. (1999). Bootstrapping case base
development with annotated case summaries. Proceedings of the
Third International Conference on Case-Based Reasoning (pp.
59-73). Seeon, Germany: Springer.

Brüninghaus, S., & Ashley, K.D. (2001). The role of information
extraction for textual CBR. Proceedings of the Fourth
International Conference on Case-Based Reasoning (pp. 74-89).
Vancouver (BC), Canada: Springer.
Burke, R.D., Hammond, K.J., Kulyukin, V., Lytinen, S.L.,
Tomuro, N., & Schoenberg, S. (1997). Question answering from
frequently-asked questions files: Experiences with the FAQ
Finder system. AI Magazine, 18(1), 57-66.
Cowie, J., & Lehnert, W. (1996). Information extraction.
Communications of the ACM, 39(1), 80-91.
CSSI (1998). Canon Multipass C-5500 User Manual. Canon
Computer Systems Inc.
Felbaum, C. (Ed.) (1998). WordNet: An electronic lexical
database. Cambridge, MA: MIT Press.
Gupta K.M. (1997). Case base engineering for large-scale
industrial applications. In B.R. Gaines & R. Uthurusamy (Eds.),
Artificial Intelligence in Knowledge Management: Papers from
the AAAI Spring Symposium (Technical Report SS-97-01).
Stanford, CA: AAAI Press.
Gupta, K.M. (2001). Taxonomic conversational case-based
reasoning. Proceedings of the Fourth International Conference
on CBR (pp. 219-233). Vancouver (BC), Canada: Springer.
Gupta, K.M., & Aha, D.W. (2003). Nominal concept
representation in sublanguage ontologies. Proceedings of the
Second International Workshop on Generative Approaches to the
Lexicon (Technical Report). Geneva, Switzerland: University of
Geneva, School of Translation and Interpretation.
Gupta, K.M., Aha, D.W., & Moore, P. (2004). Automatically
organizing indexing taxonomies from acquired features.
Manuscript submitted for publication.
Gupta, K.M., Aha, D.W., & Sandhu, N. (2002). Exploiting
taxonomic and causal relations in conversational case retrieval.
Proceedings of the Sixth European Conference on Case-Based
Reasoning (pp. 133-147). Aberdeen, Scotland: Springer.
Knight, K., & Luk, S. (1994). Building a large knowledge base
for machine translation. Proceedings of the American Association
of Artificial Intelligence (pp. 773-778). Seattle, WA: AAAI Press.
Lenz, M., Hübner, A., & Kunze, M. (1998). Textual CBR. In M.
Lenz, B. Bartsch-Spörl, H.-D. Burkhard, & S. Wess (Eds.) CBR
technology: From foundations to applications. Berlin: Springer.
Link (2003). The link parser application program interface (API).
[http://www.link.cs.cmu.edu/link/api]
Minor, M, & Hübner, A. (1999). Semi-automatic knowledge
acquisition for textual CBR. In R. Feldman & H. Hirsh (Eds.),
Text mining: Foundations, techniques, and applications: Papers
from the IJCAI-99 Workshop. Unpublished manuscript.
Pustejovsky, J. (1995). The generative lexicon. Cambridge, MA:
MIT Press.
Russell, S., & Norvig, P. (1995). Artificial Intelligence: A
modern approach. Englewood Cliffs, NJ: Prentice Hall.
Weber, R., Martins, A., & Barcia, R.M. (1998). On legal texts
and cases. In (Ashley & Lenz, 1998).
Yang, C., Orchard, R., Farley, B., & Zaluski, M. (2003).
Automated case base creation and management. Proceedings of
the Sixteenth International Conference on Industrial &
Engineering Applications of Artificial Intelligence and Expert
Systems. Loughborough, UK: Springer.
Zavrel, J. & Daelemans, W., (1999). Recent advances in memory-
based part-of-speech tagging (Technical Report 9903). Tilburg,
Netherlands: Tilburg University, Faculty of Arts, Computational
Linguistics and AI, Induction of Linguistic Knowledge Group.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

